TRIGONOMETRIC METHODS

QUESTION

1. FIGURE 1 shows the positions of four towns marked on a map.
W
32km
3
θ
58°
?
?
27km
Z
FIG. 1
X
(a) Calculate, to the nearest kilometre, the distance between towns W
and Y.
(b) Calculate, to the nearest degree, the size of the angle marked
θ.
Y
WX = 32km
WZ = 27km
XYW = 58°
(c) Calculate, to the nearest kilometre, the distance between towns Y and
Z.

2. The instantaneous value of current, i amp, at t seconds is given by:
Find the value of
(a) The amplitude.
(b) The period.
(c) The frequency.
(d) The initial phase angle (when t = 0), expressed in both radians and
degrees.
(e) The value of i when t = 2.5 s.
(f) The time (in milliseconds) when the current first reaches its maximum
value.
3. Use the trigonometrical identities to expand and simplify if possible.
(a) (i) cos(270° –
θ)
(ii) sin(270° –
θ)
(iii) cos(270° +
θ)

(b) The voltage V
If V
3
1
and V
is the sum of V
Find the expression of V
1
2
are represented by as follows,
and V
3
2
,
in sine waveform
and verify that the resultant voltage V
and V
2
.
3
is in the same frequency as V
4. (a) Given the equivalent impedance of a circuit can be calculated by the
expression
If Z
1
= 4 + j10 and Z
= 12 – j3, calculate the impedance Z in
both rectangular and polar forms.
2
(b) Three impedances are connected in parallel, Z
= 2 + j2,
Z
2
= 1 + j5 and Z
where:
3
Vt
1
Vt
2
VVV
312
VR t
3
5
=
()
3
=
()
2
sin
cos
=+
=+
()
sin ωα
Z
ZZ
12
12
ZZ
=
+
ω
ω
= j6. Find the equivalent admittance Y.
=++
111
Y
ZZZ
123
Express the admittance in both rectangular and polar forms.

5. The potential difference across a circuit is given by the complex number
Vj=+40 35 volts
and the current is given by the complex number
Ij=+6 3 amps
(a) Sketch the appropriate phasors on an Argand diagram.
(b) Find the phase difference (i.e. the angle
φ) between the phasors for
voltage V and the current I.
(c) Find the power (watt), given that
Teesside University Open Learning
(Engineering)
6
power = VI××

SOLUTION

1)  a) Let Nearest distance between W and Y = d

From Triangle WXY, Sin(58 ) =  WX/ WY

Sin(58) =  32/d

d            =     32/sin(58)

 

=    32/0.848 = 37.74 Km  Answer.

 

 

b)   From Triangle WYZ ,

Cos (theta) =  WZ/WY

=  27/37.74

=  0.715

 

 

Theta =            arcos(0.715)

Theta =     44.32 degree   Answer

 

 

c)   From Triangle WYZ ,  tan(theta) = YZ/WZ

tan(44.32) =   YZ /27

 

YZ        = 27* tan(44.32)    =  27*0.9766 =  26. 37 Km  Answer

 

 

 

 

2.  a)     Amplitude = Maximum displacement rom mean position =- 15                       Answer

 

b)     Period  = ?

w (omega) = 2 pi f  =  100 pi

f = 100 pi/2 pi = 50

 

 

Now,Period T = 1/f =  1/50 = 0.02 s

= 20 milliseconds                 Answer.

 

 

C)                Frequency  f =  50 Hz                                                                            Answer

 

d)            Initial phase angle (when t = 0 ) = 0.6 radians

Initial phase angle in degree = 0.6 *180/3.14

=  34.377 degrees                       Answer

 

 

e)  When t = 2.5 s

i = 15 sin( 100*3.14*2.5 +0.6)

= 15 sin ( 250 *pi +0.6)

 

= 15 sin(0.6) = 15*0.5646  = 8.47 Amp                           Answer

 

f)     maximum value of sine function = 1

So, Current I is maximum when sine function is maximum

Hence  sin (100 pi t + 0.6) = 1

 

 

100 pi t  +0.6 = pi/2 = 90 degree

 

314 t + 34.377  = 90

314t = 90 – 34.377

 

t =  55.62/314   = 0.177

 

time (in milliseconds)   t = 177.14 milli seconds                 Answer

 

 

 

3. a)   i)   cos(270 – theta) = cos( 180 +90 – theta)  = – cos(90-theta) = – sin (theta)            Answer

 

ii) sin(270 – theta) = sin(180 +90-theta)   = -sin(90 –theta) = – cos(theta)                  Answer

 

iii)  cos(270 +theta)  = cos(180 +90 +theta)  = –  cos( 90 + theta )

= – ( -sin (theta))  = sin (theta)             Answer

 

 

b)        V3 =  v1 +v2

= 3 sin(wt) + 2cos(wt)

 

=  sqrt (13){ 3/sqrt13 sin(wt) + 2/sqrt13 cos (wt)}

 

= sqrt(13) { sin (wt + alpha) }

 

 

Here R = sqrt(13)  ,alpha = arccos ( 3/sqrt13)

 

Here   frequency of V1 =  w /2pi

Frequency  of v2  = w/2pi                      Frequency of V3  = w/2 pi                                                                                  Answer

 

4.  a)

Z  =         z1.z2 / (Z1+Z2)

 

 

Z1.z2 =  (4+j10)(12-j3)  = 48 +30 = 78 + j108

 

Z1+z2 =  4+j10 +12 –j3  = 16 +j7

 

Z       =        (78 +j 108)/(16 +j7)

 

Z         =       (78+j108)( 16 – j7)/ (305)

Z                =        {  (1248  +756)  +j (1728+546) }/305

 

=          (2004+ j2274)/ 305

Rectangular form                            Z              =             6.57 + j 7.46                                                                   Answer

 

Polar form                                          z =    9.94 {cos(46.63) +j sin(46.63)}

 

 

 

b)                1/z1  =            1/(2+j2)   =  0.25 – j0.25

1/z2  =             1/(1+j5)   =   0.038 – j 0.19

 

1/z3  =           1/j6 =   – j0.167

Y = 0.25 –j0.25 +0.038 –j0.19 – j0.167

=  0.288  – j 0.646                                                 Answer

Rectangular form

 

Polar form                             =           0.707{ cos( 65.96) – j sin(65.96) }

5 .  a)          Vphase   (alpha ) =  41.186      and Iphase (beta) =  26.565. To draw  voltage  given V function. we take 40 uint on x plane and 35 unit on y plane.and  connect the intersection point to origin .The angle in positive x axis direction gives phase.

Similarly to draw I function we take 6 unit on x –plane and 3 unit on y plane and ollow same method to find phase of I.

b)  Phase dierence (Phi) =  41.186 -26.565 =   14.621

c )       mod of v  =  53.15   , mod of   I  = 6.707   and cos (14.621) =  0.9676

 

Power  P =  53.15*6.707 *0.9676  = 344.93  watts

GF35

“The presented piece of writing is a good example how the academic paper should be written. However, the text can’t be used as a part of your own and submitted to your professor – it will be considered as plagiarism.

But you can order it from our service and receive complete high-quality custom paper.  Our service offers solution of “Trigonometric functions” that was written by professional writer. If you like one, you have an opportunity to buy a similar paper. Any of the academic papers will be written from scratch, according to all customers’ specifications, expectations and highest standards.”

order-now-new          chat-new (1)