ANALYSIS AND CALCULATIONS

QUESTION

WAIKATO PATHWAYS COLLEGE

 

Mathematics with Calculus (CAFS004-11B)

Assignment 4

 

DATE DUE: Thursday, 13 October                         All working must be shown.

 

Question 1

a)           i)       Find the equation of the tangent to the curve   when x = 1.

ii)      Find the gradient of  at the point where x = 3.

b)         i)        Find the coordinates of the turning points of the curve , and                                    determine the nature of each one.

ii)      Sketch the graph of   .

c)         The height of a seedling at the end of its first month is given by:                            for  where H is the height, in cm, of the seedling at the end of the month, and w is the amount of water the seedling receives (litres per m2 of soil surface).  Find the amount of water required for the seedling to grow to the maximum height in its first month. [You may assume that ]

Question 2

a)           An air pump is blowing up a spherical balloon. The volume of the balloon

increases at a constant rate of 0.9 m3/s. Calculate the rate at which the surface area of the      balloon is increasing when the radius is 2 m.

b)           An island has a population of possums which are being trapped. The number of possums on           the island is given by     where P is the number     of possums, and t is the time in months after the trapping begins. Find the rate of change in           the population of possums after 3 months of trapping.

Question 3

a)        Integrate with respect to :

i) ;                              ii) .

b)       Find

i)                                                 ii)        .

iii)            .

c)   A curve has gradient  and passes through the point . Find the

equation of the curve.

 

Question 4                                                                                                                                                            a)         Evaluate: (i) ;                     (ii) .                                                 b)         Use the substitution  to evaluate.

c)   Find the area enclosed by

i)          the -axis and the curve  in the range

.

ii)   Find the area enclosed between the curves y = x2 – 2 and y = x.

 

iii) The area in c(i) above is completely rotated about the -axis. Find the volume

generated, giving your answer in terms of .

d)   The area enclosed between y = x2– 9 is rotated about the x-axis.  Calculate the

volume of the solid formed.

Question 5

a)         Find the general solution for

i)         ;                                 ii)    .

b)         Find particular solutions for the following differential equations

i)         , given that x = 2 when y = 5;

ii)        , given that y =  when x = 0.

 

 

 

Mathematics with calculus (CAFS004-11B)

 

Question 1 :

(a) (i)  Tangent to the curve is given by dy/dx

 

Now,When x = 1 , y =  3 /((1)^2 -2)      = 3/(1-2) = -3

Hence tangent passes through point (1,-3)

 

Now , when y =    3/(x^2 -2)

 

d(y)/ dx =    d{3/(x^2-2)}     = 3 (  1/(x^2-2)^2) *d(x^2)/dx

= 3(2x)/(x^4 -4x+4)

=      6x /(x^4-4x+4)

 

When x = 1 , dy/dx =  6(1)/(1 -4 +4)  = 6 /1 = 6

 

We got slope of tangent (at x = 1 ) = 6

Then,Equation of tangent through (1,-3) with slope  6

 

y – (-3) = 6(x-1)  =>   y +3 = 6x -6   =>  y = 6x -9   Answer

 

 

(ii)  Gradiant of line = slope of line = dy/dx

 

Now,Given that y = In( x^2-3)

 

So, dy/dx = d (In(x^2-3)/dx  =   1/ (x^2-3)*d(x^2)/dx

=     2x/(x^2 -3)

 

So,Gradiant at x = 1 , dy/dx at x = 1 =  2(1)/(1^2 -3)   = 2/(1-3)  = 2/-2

Gradiant = -1  Answer

 

 

 

 

b.(i)   y = 8x^2- x^4

dy/dx  = 8(2x) – (4x^3)  =>  dy/dx = 16x – 4x^3

 

Now,When dy/dx = 0 ,

16x-4x^3 = 0 , 4x(4-x^2) = 0 =>  either x = 0 or x = +2,-2

 

 

Now,When x = 0 , y = 8(0)^2 – 0^4 = 0  so, Point = (x,y) = (0,0)

Again ,when x = 2 , y = 8(2)^2 – 2^4  = 16

Point = (2,16)

 

Similarly ,when x = -2 , y = 8(-2)^2 –(-2)^4 = 8(4) -16 = 16

Point = (-2,16)

 

Hence turning points = (-2,16),(0,0) and (2,16)    Answer

 

(i) Graph of y = 8x^2 –x^4

 

Step:1 Making of table.

X

y

          -3      -9
        -2       16
         -1       7
         0        0
         1        7
          2       16
          3        -9
   
   

 

Step: 2 , when we connect all these point ,we ill get the graph of given equation.

 

 

 

(c)   H(w) = 12w – 1.2 e^0.2w

 

d(H(w))/dw =  d(12w- 1.2e^0.2w)/dw

= 12  – 1.2 (0.2)e^0.2w

=  12 – 0.24 e^0.2w

 

When d(H(w))/dw = 0 ,  12- 0.24e^0.2w = 0

e^0.2w =  12/0.24 = 50

 

0.2w  = In(50) = 3.91 = >  w = 3.91/0.2 = 19.56

 

 

Now,d^2(H(w))/dw^2 = – 1.2(0.2)(0.2)e^0.2w = 0.048e^0.2w

For w= 19.56 , 0.048e^0.2w > 0

Hence for w = 19.56 , H(w) is maximum,

And

Maximum H(w) = 12 (19.56) – 1.2 e^ 3.91

=  234.72  – 1.2(2.71)^3.91

 

= 234.72 – 59.168 =  175.55

 

And amount of water required = 19.56 liters /m^2  Answer

 

Question (2)

(a)      dv/dt = 0.9 m^3/s

 

Surface area of balloon S = 4 (pi) r^2 , where r = radius (given that r =2 m)

 

And from formula of volume of spherical balloon

V = 4/3(pi) r^3

 

dv/dt    = 4/3 (pi) (3r^2)dr/dt

0.9     = 4pi r^2 dr/dt

 

dr/dt  = 0.9 /4(pi) (2^2)   = 0.9 /(8*3.14) =  0.0358

 

Now  s  = 4 pi r^2

So,  ds/dt = 4 pi (2r) dr/dt =  8 pi dr/dt

ds/dt    = 8*3.14* 0.0358  =  1.8 m^2/s  Answer

(b)   p(t) = 5000 – 4t^2 – 1500In(2t+1)

Rate of change  = dp(t)/dt

d p(t)/dt  = d{5000- 4t^2 -1500In(2t+1)}/dt
=  -8t – 1500/(2t+1)*2

= -8t -3000/(2t+1)

Now,When t = 3

Rate of change = dp(t)/dt =  -8(3) – 3000(2*3+1) = -24 – 428.57   =  – 552.57   Answer

Here ,negative sign mean that ,possums are decresing with time.

Question 3:
(a) (i)  f(x) = 8e^4x +6sin(3x)

Integration of f(x) =  Int{8e^4x +6sin(3x)}dx

8e^4x/4      +6(-cos(3x)/3 + c , Where c = Integretion constant

=  2e^4x -2cos(3x) + c                                            Answer

(ii)  f(x) =    (x^4 +4)^2/4x^6

= (x^8 +8x^4 +16)/4x^6   =>  ¼{ x^8/x^6 +8x^4/x^6 + 16/x^6}

= ¼ {x^2 +8x^-2 +16x^-6}

Now, Integretion of  f(x) = Integretion of ¼ {x^2 +8x^-2 +16x^-6}

= ¼ { x^3/3 -8x^-1 -16/5 x^-5} +c

( x^3)/12  – 2/x – 4/(5 x^5)  + c                       Answer

b)  (i)      =    8x^4/4 –  6 /(-3x^3) +c
=  2x^4  +2/x^3  +c                                            Answer

(ii)   .  =   Int of { cos 4theta + cos theta } d (theta)
=   sin(4 theta)/4 + sin(theta) +c                 Answer

(iii)  .    , Let (x^3 +7 ) = z    , Then  dz = 3x^2 ,dx , so ,x^2dx= dz/3,

Now Int of  1 /sqrtz dz =   2/3sqrtz +c

=  2/3 sqrt (x^3+7) + c                      Answer

(c)    dy/dx  =  8cos (2x)
Integrating both sides with respect to x , we get

y =  8 sin (2x)/2 +c  = >  y = 4sin(2x) +c

Now,Given that curve passes through point (pi/12 ,9)

So,              9 = 4 sin(2*pi/12)   =  4 sin(pi/6) +c
9 = 4(1/2) +c
9 = 2+c  = > c = 9-2 = 7

Hence Curve equation  y  = 4sin(2x) + 7                                   Answer

Question 4 :
(a) (i)    ;   =   Int {4x^2 +20x +25} dx from x = -2 to x = 1
=[ 4/3x^3 +10x^2 +25x ] from x = -2 to x = 1

= 4/3 +10 +25  -(-32/3 +40 -50) =  57                Answer

(ii)       =   [9(-cot(3x)/3 ]  from x = pi/18 to x = pi/9
-3 cot(pi/3) + 3cot (pi/6)

– 3/sqrt3 +3 sqrt3   = 2 sqrt3                                        Answer

(b)     .   Let  Inx = z , dz = dx/x

Int z dz =  z^2/2  = In(x)/2] from x = 1 to x = 2
= In2/2 – 0 =  0.346                               Answer

(c) (1)     Area  A =  Int of sin (x) dx from x = pi to x = 2 pi
= -cos(x) rom x = pi to x = 2pi
= – cos(2pi) +cos(pi)  = -1 -1  = -2    = 2 units             Answer
(ii)  When y = x , x = x^2 -2 = > x^2 –x -2 = 0

(x-2)(x+1) = 0 , so , x = -1 and 2

Now , Area between 2 curves =   x^3/3 -2x – x^2/2 from x = -1 to x = 2

Area  = 8/3 -4 -2 + 1/3 -2 +1/2   =    3/2                        Answer

(iii)     Vollume  = Pi (area)^2
= pi (2^2)             = 4pi                                    Answer

(d)    Vollume  v = pi (area)^2

V =  pi (x^3/3 -9x +c)^2                                     Answer

Here c = Integretion constation.

Question 5:

(a)(i)   ;    dy/dx   = 1+y

dy/(1+y)   = dx
Now ,Integreting both sides ,We get

In(1+y)  = x +c   or, 1+y = e^x +c

Y = e^x +c-1    Y = e^x + c                     Answer

Here C = Integretion Constant .

(ii)   .    dy =   – (x/x+2) dx

y =  Int of –{ 1 -2/x+2} dx            = – x +2 In(x+2) +c

Y = 2In(x+2) –x +c                                             Answer

(b) (i)        or  4ydy = xdx    = >  2y^2 = x^2 /2 +c

Given That x = 2 y = 5 ,

2(5)^2  = (2)^2/2 +c  , c = 48

So, 2y^2 = x^2/2 +48    or , y = ½ sqrt (x^2+96)                      Answer

(ii)              => sin(y)  = x^2/2 +c

Given that  x = 0 , y = pi/2            sin(pi/2) = x^2/2 +c

C = 1 ,
Sin(y) = x^2/2 +1                                    Answer
GI51

“The presented piece of writing is a good example how the academic paper should be written. However, the text can’t be used as a part of your own and submitted to your professor – it will be considered as plagiarism.

But you can order it from our service and receive complete high-quality custom paper.  Our service offers “Maths” sample that was written by professional writer. If you like one, you have an opportunity to buy a similar paper. Any of the academic papers will be written from scratch, according to all customers’ specifications, expectations and highest standards.”

order-now-new             chat-new (1)