Markov Chain:995589

The Markov C

The Markov Chain with one-step transition matrix is given below.

P =

1. The above transition matrix is right stochastic if the sum of each row is 1 or it can be right stochastic if the sum of each column is 1 or it can be said that the matrix is doubly stochastic if both sum of row and column sums up to 1. Now, a MATLAB script is written to find the sum of each row and column.

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15];

for i=1:length(P)

scol(i) = sum(P(:,i));

srow(i) = sum(P(i,:));

end

srow

scol = scol’

Output:

sumprob

srow =

     1     1     1     1     1

scol =

    1.0500

    1.5000

    1.1000

    0.5500

    0.8000

Hence, as the row sum is 1 hence the state transition matrix is right stochastic only.

2. The nth step of Markov chain simulation is given by,

Where,  is the probability vector after nth step.

 = initial state distribution.

n = simulation number.

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15]; % state transition matrix

pi0 = [3/15 2/15 4/15 5/15 1/15]; % initial state distribution

n = 10000; % number of steps is 10000

fprob = pi0*(P^n); % final state probability matrix

row_sum = sum(fprob);

fprob

row_sum

Output:

EE380_Exp10_A

fprob =

    0.1781    0.3050    0.2316    0.1176    0.1676

row_sum =

    1.0000

Hence, it can be seen that after 10000 simulation the sum of probabilities in the row is equal to 1. Hence, the final state transition matrix is also right stochastic.

3. Now, the final probability array is generated after 10000 simulations for 20 randomly chosen initial distributions. The initial distributions are chosen from uniform distribution having values between [0,1].

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15]; % state transition matrix

for i=1:20

pi0 = rand(1,length(P)) % initial state distribution chosen randomly from uniform distribution

n = 10000; % number of steps is 10000

fprob = pi0*(P^n) % final state probability matrix

row_sum = sum(fprob)

end

Output:

EE380_Exp10_B

pi0 =

    0.6557    0.0357    0.8491    0.9340    0.6787

fprob =

    0.5617    0.9617    0.7303    0.3709    0.5286

row_sum =

    3.1533

pi0 =

    0.7577    0.7431    0.3922    0.6555    0.1712

fprob =

    0.4845    0.8295    0.6299    0.3199    0.4559

row_sum =

    2.7198

pi0 =

    0.7060    0.0318    0.2769    0.0462    0.0971

fprob =

    0.2063    0.3532    0.2682    0.1362    0.1941

row_sum =

    1.1581

pi0 =

    0.8235    0.6948    0.3171    0.9502    0.0344

fprob =

    0.5024    0.8601    0.6532    0.3317    0.4727

row_sum =

    2.8201

pi0 =

    0.4387    0.3816    0.7655    0.7952    0.1869

fprob =

    0.4574    0.7832    0.5948    0.3021    0.4305

row_sum =

    2.5679

pi0 =

    0.4898    0.4456    0.6463    0.7094    0.7547

fprob =

    0.5426    0.9289    0.7054    0.3583    0.5106

row_sum =

    3.0457

pi0 =

    0.2760    0.6797    0.6551    0.1626    0.1190

fprob =

    0.3371    0.5772    0.4383    0.2226    0.3172

row_sum =

    1.8924

pi0 =

    0.4984    0.9597    0.3404    0.5853    0.2238

fprob =

    0.4645    0.7953    0.6039    0.3067    0.4371

row_sum =

    2.6076

pi0 =

    0.7513    0.2551    0.5060    0.6991    0.8909

fprob =

    0.5526    0.9462    0.7185    0.3649    0.5200

row_sum =

    3.1023

pi0 =

    0.9593    0.5472    0.1386    0.1493    0.2575

fprob =

    0.3655    0.6258    0.4753    0.2414    0.3440

row_sum =

    2.0519

pi0 =

    0.8407    0.2543    0.8143    0.2435    0.9293

fprob =

    0.5490    0.9400    0.7138    0.3625    0.5167

row_sum =

    3.0821

pi0 =

    0.3500    0.1966    0.2511    0.6160    0.4733

fprob =

    0.3361    0.5755    0.4371    0.2220    0.3163

row_sum =

    1.8870

pi0 =

    0.3517    0.8308    0.5853    0.5497    0.9172

fprob =

    0.5762    0.9865    0.7492    0.3805    0.5422

row_sum =

    3.2347

pi0 =

    0.2858    0.7572    0.7537    0.3804    0.5678

fprob =

    0.4890    0.8372    0.6358    0.3229    0.4602

row_sum =

    2.7450

pi0 =

    0.0759    0.0540    0.5308    0.7792    0.9340

fprob =

    0.4229    0.7240    0.5498    0.2792    0.3979

row_sum =

    2.3738

pi0 =

    0.1299    0.5688    0.4694    0.0119    0.3371

fprob =

    0.2703    0.4627    0.3514    0.1785    0.2543

row_sum =

    1.5171

pi0 =

    0.1622    0.7943    0.3112    0.5285    0.1656

fprob =

    0.3495    0.5983    0.4544    0.2308    0.3289

row_sum =

    1.9619

pi0 =

    0.6020    0.2630    0.6541    0.6892    0.7482

fprob =

    0.5267    0.9017    0.6847    0.3478    0.4956

row_sum =

    2.9564

pi0 =

    0.4505    0.0838    0.2290    0.9133    0.1524

fprob =

    0.3258    0.5578    0.4236    0.2151    0.3066

row_sum =

    1.8291

pi0 =

    0.8258    0.5383    0.9961    0.0782    0.4427

fprob =

    0.5132    0.8787    0.6673    0.3389    0.4830

row_sum =

    2.8811

Hence, ti can be seen from the above simulations with 20 restarts that the sum of row probabilities are not equal to 1. Only, the sum is closest to 1 (1.1581) when the initial distribution is

Hence, if the sum of probabilities in the initial distribution is equal to 1 then the final probabilities after simulation of Markov chain will be equal to 1.

4.

Now, distribution is stationary as the sum of the probabilities of initial distribution is not equal to 1 and the equation for being stationary distribution is not satisfied. The equation for stationary distribution is

hain with one-step transition matrix is given below.

P =

1. The above transition matrix is right stochastic if the sum of each row is 1 or it can be right stochastic if the sum of each column is 1 or it can be said that the matrix is doubly stochastic if both sum of row and column sums up to 1. Now, a MATLAB script is written to find the sum of each row and column.

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15];

for i=1:length(P)

scol(i) = sum(P(:,i));

srow(i) = sum(P(i,:));

end

srow

scol = scol’

Output:

sumprob

srow =

     1     1     1     1     1

scol =

    1.0500

    1.5000

    1.1000

    0.5500

    0.8000

Hence, as the row sum is 1 hence the state transition matrix is right stochastic only.

2. The nth step of Markov chain simulation is given by,

Where,  is the probability vector after nth step.

 = initial state distribution.

n = simulation number.

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15]; % state transition matrix

pi0 = [3/15 2/15 4/15 5/15 1/15]; % initial state distribution

n = 10000; % number of steps is 10000

fprob = pi0*(P^n); % final state probability matrix

row_sum = sum(fprob);

fprob

row_sum

Output:

EE380_Exp10_A

fprob =

    0.1781    0.3050    0.2316    0.1176    0.1676

row_sum =

    1.0000

Hence, it can be seen that after 10000 simulation the sum of probabilities in the row is equal to 1. Hence, the final state transition matrix is also right stochastic.

3. Now, the final probability array is generated after 10000 simulations for 20 randomly chosen initial distributions. The initial distributions are chosen from uniform distribution having values between [0,1].

MATLAB code:

P = [0.25 0.35 0.15 0 0.25;0.15 0.2 0.4 0.1 0.15;0.1 0.35 0.05 0.3 0.2;0.55 0 0.25 0.15 0.05;0 0.6 0.25 0 0.15]; % state transition matrix

for i=1:20

pi0 = rand(1,length(P)) % initial state distribution chosen randomly from uniform distribution

n = 10000; % number of steps is 10000

fprob = pi0*(P^n) % final state probability matrix

row_sum = sum(fprob)

end

Output:

EE380_Exp10_B

pi0 =

    0.6557    0.0357    0.8491    0.9340    0.6787

fprob =

    0.5617    0.9617    0.7303    0.3709    0.5286

row_sum =

    3.1533

pi0 =

    0.7577    0.7431    0.3922    0.6555    0.1712

fprob =

    0.4845    0.8295    0.6299    0.3199    0.4559

row_sum =

    2.7198

pi0 =

    0.7060    0.0318    0.2769    0.0462    0.0971

fprob =

    0.2063    0.3532    0.2682    0.1362    0.1941

row_sum =

    1.1581

pi0 =

    0.8235    0.6948    0.3171    0.9502    0.0344

fprob =

    0.5024    0.8601    0.6532    0.3317    0.4727

row_sum =

    2.8201

pi0 =

    0.4387    0.3816    0.7655    0.7952    0.1869

fprob =

    0.4574    0.7832    0.5948    0.3021    0.4305

row_sum =

    2.5679

pi0 =

    0.4898    0.4456    0.6463    0.7094    0.7547

fprob =

    0.5426    0.9289    0.7054    0.3583    0.5106

row_sum =

    3.0457

pi0 =

    0.2760    0.6797    0.6551    0.1626    0.1190

fprob =

    0.3371    0.5772    0.4383    0.2226    0.3172

row_sum =

    1.8924

pi0 =

    0.4984    0.9597    0.3404    0.5853    0.2238

fprob =

    0.4645    0.7953    0.6039    0.3067    0.4371

row_sum =

    2.6076

pi0 =

    0.7513    0.2551    0.5060    0.6991    0.8909

fprob =

    0.5526    0.9462    0.7185    0.3649    0.5200

row_sum =

    3.1023

pi0 =

    0.9593    0.5472    0.1386    0.1493    0.2575

fprob =

    0.3655    0.6258    0.4753    0.2414    0.3440

row_sum =

    2.0519

pi0 =

    0.8407    0.2543    0.8143    0.2435    0.9293

fprob =

    0.5490    0.9400    0.7138    0.3625    0.5167

row_sum =

    3.0821

pi0 =

    0.3500    0.1966    0.2511    0.6160    0.4733

fprob =

    0.3361    0.5755    0.4371    0.2220    0.3163

row_sum =

    1.8870

pi0 =

    0.3517    0.8308    0.5853    0.5497    0.9172

fprob =

    0.5762    0.9865    0.7492    0.3805    0.5422

row_sum =

    3.2347

pi0 =

    0.2858    0.7572    0.7537    0.3804    0.5678

fprob =

    0.4890    0.8372    0.6358    0.3229    0.4602

row_sum =

    2.7450

pi0 =

    0.0759    0.0540    0.5308    0.7792    0.9340

fprob =

    0.4229    0.7240    0.5498    0.2792    0.3979

row_sum =

    2.3738

pi0 =

    0.1299    0.5688    0.4694    0.0119    0.3371

fprob =

    0.2703    0.4627    0.3514    0.1785    0.2543

row_sum =

    1.5171

pi0 =

    0.1622    0.7943    0.3112    0.5285    0.1656

fprob =

    0.3495    0.5983    0.4544    0.2308    0.3289

row_sum =

    1.9619

pi0 =

    0.6020    0.2630    0.6541    0.6892    0.7482

fprob =

    0.5267    0.9017    0.6847    0.3478    0.4956

row_sum =

    2.9564

pi0 =

    0.4505    0.0838    0.2290    0.9133    0.1524

fprob =

    0.3258    0.5578    0.4236    0.2151    0.3066

row_sum =

    1.8291

pi0 =

    0.8258    0.5383    0.9961    0.0782    0.4427

fprob =

    0.5132    0.8787    0.6673    0.3389    0.4830

row_sum =

    2.8811

Hence, ti can be seen from the above simulations with 20 restarts that the sum of row probabilities are not equal to 1. Only, the sum is closest to 1 (1.1581) when the initial distribution is

Hence, if the sum of probabilities in the initial distribution is equal to 1 then the final probabilities after simulation of Markov chain will be equal to 1.

4.

Now, distribution is stationary as the sum of the probabilities of initial distribution is not equal to 1 and the equation for being stationary distribution is not satisfied. The equation for stationary distribution is