PHYSICS EQUATION

                                                                  Assignment-3

 

 

1.   Taking first constant term of fourier series.As T is large higher order terms are approximately zero.

 

 

F= A*τ/T ,

 

Where τ=T-del(T),

 

4sqrt(2)=5* {T-delta(T)}/T,

 

Delta(T)/T =  0.12

 

 

  1. (a)-By superposition theorem,

 

Current by first source,

 

I1= |V1/Z1 |= |(120./sqrt((20)^2 + (2.pi.60.*0.1)^2) |

 

Current by second source-

 

I2=V2/Z2= |V2./sqrt((20)^2 + (2.pi.50.*0.1)^2)|

 

Total current,

 

I=I1+I2,

 

Given Irms=5;

 

Solving ,

 

 

V2rms=76.91 volts

 

(b) Power factor,geometric mean due to both sources–

 

Sqrt(Cos(phi1)Cos(phi2))=sqrt((R/Z1)(R/Z2))=400/sqrt(1400*1840)  = 0.25

 

 

 

3.(a) F(x)=x^2 +2 ;

F(-x)=(-x)^2 +2=F(x)     ,

 

This is an even function.

 

(b) F(x)=(x^2+2)tan(x)^2 ;

 

F(-x)=((-x)^2 +2)tan(-x)^2=F(x);

 

This is an even function.

 

(c) F(x)= (x^2+2)sin(x)tan(x)^2 ;

 

 

F(-x)= ((-x)^2+2)sin(-x)tan(-x)^2  = – F(x) ;

 

This is an odd function.

 

 

 

4.For fourier series we will evaluate the constants, T=(0-(-2)+(2)-0)=4;

 

 

 

So that    a0=2/4=1/2;

 

 

 

 

Where  w0=2.pi/T=2.pi/4=pi/2

 

So that  an=-1  ;

 

 

 

So that bn=2/n.pi;

 

So the fourier series is,

 

 

 

 

 

 

 

5.(a) Inverse fourier transform is,

Ft=F^(-1) [F(w)];

 

Where F(w)= | F(w)| exp(j*theta(w));

Where | F(w)|= (alpha^2 ) + ((beta)^2);

Theta = tan^(-1) (beta/alpha)  ;

 

 

 

The code for solving this is ,

 

alpha=input(‘alpha=’);

beta=input(‘beta=’);

Fw=((alpha.^2)+(beta.^2))

theta=atan(beta./alpha)

 

 

Hence

 

 

 

 

After integrating between limits (-infinity) to (0) and then (0) to (infinity) we will have Ft.It is difficult to solve above equation.This is the difficulty in this problem.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assignment-4

 

1.(a)The damping ratio is the ratio of real and imaginary parts,

 

So that,      ζ = -σ/ω  ,  σ is the x-axis ,j ω is the y-axis, in s plane ,

We have to analysis the graph in s plane,in which these formulas can be applied.But the graph is in V,t plane.This is the difficulty.If we can convert this V,t graph to s-plane graph than damping ratio can be find by above formula.

 

(c) the undamped frequency of oscillation is,

 

 

 

(b)= Damped frequency is ,    ω= ω(undamped).sqrt(1- ζ^2)

 

 

2. (a)     £   (20)= 20/s  ;

£ (20sin(5t) =100/(s^2+25)  ;

 

£  (20exp(-5t)  = 20/(s+5) ;

 

£  (20 exp(-5t)cos(5t))= 100/((s+5)^2 + 25) ;

 

£  (20t^2) = 2/s^2  ;

 

 

(b) £^(-1) [1/(2s+4)] =0.5 exp(-2t) ;

 

£^(-1)  [5s/(16+s^2)]  =  5.cos(4t) ;

 

£^(-1) [10/s^2]  =  10t   ;

 

£^(-1) [4/((s-2)^2 +16)]  =  exp(2t)* sin(4t) ;

 

£^(-1) [ (9s+23)/(s+2)(s+3)] = £^(-1) [( 9(s+2) + 5)/(s+2)(s+3)]

= 9exp(-3t) + 5(exp(-2t)+ exp(-3t))

 

 

 

 

 

 

  1. (1)£^(-1) [1/(s^2+2s+2)] = £^(-1) [1/((s+1)^2 + 1)] = exp(-t)sin(t)

 

(2)    £^(-1) [1/(s^2+s+2)] = £^(-1) [ (1)/(s+1/2)^2 + 7/4)]

=  (2/sqrt(7))exp((-1/2)t)sin(sqrt(7)t/2)

 

(3)      £^(-1) [1/(s^2+0.5*s+2)] = (4/sqrt(31))exp((-1/4)t)sin(sqrt(31)t/4) ;

 

(4)       £^(-1) [1/(s^2+0.4*s+4)]  =

We compare coefficients and match the graphs—

 

We will check how much decrease in volts with decrease in frequency—

 

4 – D

3 –  B

2-  C

1—A

 

 

 

 

 

 

 

  1. (a) Laplace equation will be,  tou*s*deltaT(s) + deltaT(s) = (Tw-Ta)

 

deltaT(s) = (Tw- Ta)/tou*(s + 1/tou)

 

(b) Transient  response is,

deltaT(s)= ((Tw- Ta)/tou)exp(-t/tou) ,

 

where tou= mc/Ah

 

 

(c) Plot is  ,

Ta=20;Tw=100;m=2.5.*10.^(-3);A=10.^(-3);c=0.2;h=0.78;

tou= m.*c./(A.*h) ;

t=0:tou:4*tou;

deltaT= ((Tw- Ta)./tou).*exp(-t./tou) ;

plot(t,deltaT);

xlabel(‘t’);

ylabel(‘deltaT’);

 

 

 

 

 

 

 

  1. (a)

 

 

Vo= Vi* (RXc/(R+Xc))/(XL +(RXc/(R+Xc)) = ((100/0.001)(100*s)/(100+s./0.001))/((100*s*0.5)+(100.*s/0.001)/(100 + s/0.001))

 

Vo= (10^(5)*s/(1+10s))/(50*s + (10^3)s/(1+10s));

 

Vo= (10^(5))*s/(500*s^2+1050*s)

 

Vo=(10^5)/(500*s+ 1050);

 

 

 

(b)   Vo= .01*200/(s+ 2.1);

 

V(t)= 2exp(-2.1t) ;

 

t=0:1:100;

Vo=2.*exp(-2.1.*t);

plot(t,Vo);

xlabel(‘t’);

ylabel(‘Vo’);

 

 

 

 

 

NOTE—Answer 5 of assignment3 and answer 1 of assignment 4 are not exact solution but hints .

LC03

“The presented piece of writing is a good example how the academic paper should be written. However, the text can’t be used as a part of your own and submitted to your professor – it will be considered as plagiarism.

But you can order it from our service and receive complete high-quality custom paper.  Our service offers Science  essay sample that was written by professional writer. If you like one, you have an opportunity to buy a similar paper. Any of the academic papers will be written from scratch, according to all customers’ specifications, expectations and highest standards.”

Please  Click on the  below links to Chat Now  or fill the Order Form !
order-now-new                         chat-new (1)