Petroleum Engineering of Phase Change in Thermodynamics: 1249294

Introduction

As a discipline, petroleum engineering seeks to assess prospective oil and gas reservoirs; supervise drilling undertakings; chose and implement extraction measures; and plan surface collection and treatment equipment (Bradley, 1987). But why petroleum engineering? The ever increasing energy needs and sustainable materials, necessitates developing new methods and practices to extracting hydrocarbons from oil shale and offshore oil and gas fields. Besides, petroleum engineering seeks to address complex challenges that arise from heavy fraction deposition in the extraction process that can sometime run into several millions dollars (Kinney, Lance, & Catherine, 2018).

Why phase behavior in petroleum engineering?

In a bid to model reservoirs, assess reserves; plan production, conveyance and utilization systems to eschew problems related to heavy organic deposition, there is need to develop models for foreseeing phase behavior of petroleum fluids (Jin, Zhehui, & Firoozabadi, 2016). Phase behavior is the study of pressure, composition and temperature properties of petroleum fluids in solid, liquid and gas states. If one increases temperature of a petroleum fluid in liquid state while keeping pressure constant, fluid reaches bubble point, upon further temperature increase it reaches dew point (Whitson et al., 2010). In another instance, if one reduces pressure of a petroleum fluid while keeping temperature constant, fluid reaches bubble point, upon further reduction it reaches the dew point (Mansoori 17). Phase behaviors influence the 1st order, 2nd order and infinite-order transitions of the fluids.

Advantage of EOS modeling over experiments

An Equation of State is an analytical expression relating pressure (p) to temperature (T) and volume (V). This relation is vital in assessing the volumetric and phase behavior of petroleum reservoir fluids and envisaging the performance of surface separation facilities (Pedersen et al., 2014). Most accepted EOSs in use today are the Soave-Redlich-Kwong (SRK) and Peng-Robinson (PR) which are simple adjustment of the Van Der Waal’s equation in 1873. EOS model is more beneficial over fluid injection experiments in that an EOS model can be fine-tuned for any specific need by varying parameters to tell fluid properties (Vinet et al,. 2008).

What type of cubic EOS you would use in this report? Why?

All equations of state are developed for pure fluids first, then extended to mixtures by calculating mixture properties equivalent to those of pure substances. For this report, I would use PR EOS because it performs better by a small margin in predicting vapor-pressure and densities of fluids compared to SRK EOS and experimental methods (Abudour et al., 2017). PR EOS is also easy to use and more reliable (Ashour et-al., 2011).

What are CCE, CVD, and DV processes? Give some examples about these procedures in petroleum engineering. 

Constant composition expansion (CCE) – is a property that illustrates pressure-volume behavior of a fluid without changes in fluid composition (Bi, Ran and Hadi, 2019).

Constant Volume Depletion (CVD) – these are processes done on gas condensates and volatile oils in order to simulate composition variation as well as reservoir depletion performance (Arabloo et al., 2014).

Differential Vaporization (DV) – it is the process that involves liberation of solution gas from the oil during pressure decline for example, differential liberation at the reservoir (separation process) (Umnahanant, 2019).

Report objective

The main objective of this report is to provide adept information about petroleum engineering and all that relate to phase behavior.

Methodologies

Key PR-EOS equations

 –        

Where a = 0.45724

b = 0.0778

                      = [1 + k (1 – )] 2

                  k = 0.37464 + 1.54226 – 0.2

                 Tr =

Equilibrium conditions of PR-EOS

At equilibrium, the given pressure and temperature are directly proportional. Temperature and pressure in PR-EOS are not independent quantities; they are linked to the general form of the EOS (Li et al., 2019).

Results and Discussions

Calculations Summary

Calculations of Constant Composition Expansion (CCE) of both upper and lower dewpoint, Constant Volume Depletion (CVD) for upper dewpoint, and Differential Vaporization (DV) bubblepoint.

Constant Composition Expansion (CCE)

Pressure Calculation Sequence 2

 P (bar) =  120.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -8.41734E-03        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor                liquid      comp.

   1     0.7000     0.74898137     0.46563815    CH4                 

   2     0.3000     0.25101863     0.53436185    nC6                 

                                                   VAPOR                   LIQUID

  MOLAR FRACTION:                0.82713                 0.17287

  VOLUME FRACTION:              0.87823                 0.12177

  ZFACTOR:                                 0.76673                 0.50837

  MW(g/mol):                               33.64645                53.52014

  MASS DEN(Kg/L):               0.14867                 0.35647

  MOLE DEN(mol/L):              4.41869                 6.66043

  VISCOSITY(cP):                    0.01834                 0.04226

  SURFACE TENSION(dyne/cm):                 0.17613

 Iter (SSI)       =           16

 Iter (NR)        =            2

 Error flash      =  3.31E-12

 Tolerance flash  =  1.00E-10

Pressure Calculation Sequence 3

P (bar) =  100.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -3.00633E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

 TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

   1     0.7000     0.76577924     0.37755794    CH4                 

   2     0.3000     0.23422076     0.62244206    nC6                 

                                                   VAPOR                   LIQUID                                                            

  MOLAR FRACTION:               0.83056                 0.16944

  VOLUME FRACTION:              0.90184                 0.09816

  ZFACTOR:                                   0.79768                 0.42722

  MW(g/mol):                                32.46824                59.69809

  MASS DEN(Kg/L):                      0.11492                 0.39603

  MOLE DEN(mol/L):                      3.53938                 6.63385

  VISCOSITY(cP):                           0.01686                 0.04876

  SURFACE TENSION(dyne/cm):                 0.59546

 Iter (SSI)       =           11

 Iter (NR)        =            2

 Error flash      =  1.09E-11

 Tolerance flash  =  1.00E-10

Pressure Calculation Sequence 4

P (bar) =   80.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -5.96432E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

     1     0.7000     0.76653736     0.29556489    CH4                 

   2     0.3000     0.23346264     0.70443511    nC6                 

                                                     VAPOR                   LIQUID

  MOLAR FRACTION:               0.85872                 0.14128

  VOLUME FRACTION:              0.93529                 0.06471

  ZFACTOR:                                  0.82167                 0.34827

  MW(g/mol):                                 32.41507                65.44908

  MASS DEN(Kg/L):                       0.08910                 0.42778

  MOLE DEN(mol/L):                    2.74884                 6.53608

  VISCOSITY(cP):                          0.01570                 0.05491

  SURFACE TENSION(dyne/cm):                 1.26383

 Iter (SSI)       =            8

 Iter (NR)        =            2

 Error flash      =  4.11E-11

 Tolerance flash  =  1.00E-10

Pressure Calculation sequence 5

P (bar) =   60.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -6.94205E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

     1     0.7000     0.74902086     0.21505687    CH4                 

   2     0.3000     0.25097914     0.78494313    nC6                 

                                                    VAPOR                   LIQUID

  MOLAR FRACTION:               0.90819                 0.09181

  VOLUME FRACTION:              0.96919                 0.03081

  ZFACTOR:                                  0.84135                 0.26764

  MW(g/mol):                                33.64368                71.09591

  MASS DEN(Kg/L):                      0.06774                 0.45520

  MOLE DEN(mol/L):                    2.01341                 6.40260

  VISCOSITY(cP):                           0.01458                 0.06113

  SURFACE TENSION (dyne/cm):                 2.17832

 Iter (SSI)       =            6

 Iter (NR)        =            2

 Error flash      =  4.22E-13

 Tolerance flash  =  1.00E-10

Constant Volume Depletion

Pressure Calculation Sequence 2

 P (bar) =  120.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -8.41734E-03        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor                liquid      comp.

   1     0.7000     0.74898137     0.46563815    CH4                 

   2     0.3000     0.25101863     0.53436185    nC6                 

                                                   VAPOR                   LIQUID

  MOLAR FRACTION:                0.82713                 0.17287

  VOLUME FRACTION:              0.87823                 0.12177

  ZFACTOR:                                 0.76673                 0.50837

  MW(g/mol):                               33.64645                53.52014

  MASS DEN(Kg/L):               0.14867                 0.35647

  MOLE DEN(mol/L):              4.41869                 6.66043

  VISCOSITY(cP):                    0.01834                 0.04226

  SURFACE TENSION(dyne/cm):                 0.17613

 Iter (SSI)       =           16

 Iter (NR)        =            2

 Error flash      =  3.31E-12

 Tolerance flash  =  1.00E-10

Pressure Calculation Sequence 3

P (bar) =  100.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -3.00633E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

 TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

   1     0.7000     0.76577924     0.37755794    CH4                 

   2     0.3000     0.23422076     0.62244206    nC6                 

                                                   VAPOR                   LIQUID                                                            

  MOLAR FRACTION:               0.83056                 0.16944

  VOLUME FRACTION:              0.90184                 0.09816

  ZFACTOR:                                   0.79768                 0.42722

  MW(g/mol):                                32.46824                59.69809

  MASS DEN(Kg/L):                      0.11492                 0.39603

  MOLE DEN(mol/L):                      3.53938                 6.63385

  VISCOSITY(cP):                           0.01686                 0.04876

  SURFACE TENSION(dyne/cm):                 0.59546

 Iter (SSI)       =           11

 Iter (NR)        =            2

 Error flash      =  1.09E-11

 Tolerance flash  =  1.00E-10

Pressure Calculation Sequence 4

P (bar) =   80.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -5.96432E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

     1     0.7000     0.76653736     0.29556489    CH4                 

   2     0.3000     0.23346264     0.70443511    nC6                 

                                                     VAPOR                   LIQUID

  MOLAR FRACTION:               0.85872                 0.14128

  VOLUME FRACTION:              0.93529                 0.06471

  ZFACTOR:                                  0.82167                 0.34827

  MW(g/mol):                                 32.41507                65.44908

  MASS DEN(Kg/L):                       0.08910                 0.42778

  MOLE DEN(mol/L):                    2.74884                 6.53608

  VISCOSITY(cP):                          0.01570                 0.05491

  SURFACE TENSION(dyne/cm):                 1.26383

 Iter (SSI)       =            8

 Iter (NR)        =            2

 Error flash      =  4.11E-11

 Tolerance flash  =  1.00E-10

Pressure Calculation sequence 5

P (bar) =   60.000000

 T (K)   =  426.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -6.94205E-02        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

     1     0.7000     0.74902086     0.21505687    CH4                 

   2     0.3000     0.25097914     0.78494313    nC6                 

                                                    VAPOR                   LIQUID

  MOLAR FRACTION:               0.90819                 0.09181

  VOLUME FRACTION:              0.96919                 0.03081

  ZFACTOR:                                  0.84135                 0.26764

  MW(g/mol):                                33.64368                71.09591

  MASS DEN(Kg/L):                      0.06774                 0.45520

  MOLE DEN(mol/L):                    2.01341                 6.40260

  VISCOSITY(cP):                           0.01458                 0.06113

  SURFACE TENSION (dyne/cm):                 2.17832

 Iter (SSI)       =            6

 Iter (NR)        =            2

 Error flash      =  4.22E-13

 Tolerance flash  =  1.00E-10

Differential Vaporization (DV)

Pressure Calculation sequence 2

P (bar) =  160.000000

 T (K)   =  400.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -6.30686E-04       -3.98676E-04

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

   idx     feed        vapor          liquid      comp.

     1     0.7000     0.79042681     0.61227622    CH4                 

   2     0.3000     0.20957319     0.38772378    nC6                 

                                                    VAPOR                   LIQUID

  MOLAR FRACTION:               0.49241                 0.50759

  VOLUME FRACTION:              0.54167                 0.45833

  ZFACTOR:                                   0.75595                 0.61477

  MW(g/mol):                                   30.73946                43.23495

  MASS DEN(Kg/L):                       0.19563                 0.33520

  MOLE DEN(mol/L):                     6.36406                 7.75298

  VISCOSITY(cP):                          0.02063                 0.03964

  SURFACE TENSION (dyne/cm):                 0.03460

  Iter (SSI)       =           39

 Iter (NR)        =            4

 Error flash      =  2.09E-14

 Tolerance flash  =  1.00E-10

Pressure Calculation sequence 3

P (bar) =  130.000000

 T (K)   =  400.000000

  STABILITY ANALYSIS

   ONE-PHASE TPD =            -1.52545E-02       -3.30254E-03

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

   idx     feed        vapor          liquid      comp.

     1     0.7000     0.83656193     0.48169813    CH4                 

   2     0.3000     0.16343807     0.51830187    nC6                 

                                                   VAPOR                   LIQUID

  MOLAR FRACTION:               0.61517                 0.38483

  VOLUME FRACTION:              0.71778                 0.28222

  ZFACTOR:                                0.80525                 0.50530

  MW(g/mol):                               27.50355                52.39369

  MASS DEN(Kg/L):                   0.13351                 0.40465

  MOLE DEN(mol/L):                 4.85418                 7.72325

  VISCOSITY(cP):                       0.01774                 0.05142

  SURFACE TENSION(dyne/cm):                 0.50615

   Iter (SSI)       =           16

 Iter (NR)        =            2

 Error flash      =  1.69E-13

 Tolerance flash  =  1.00E-10

Pressure Calculation sequence 4

P (bar) =  100.000000

 T (K)   =  400.000000

  STABILITY ANALYSIS

     ONE-PHASE TPD =            -8.21593E-02       -2.11102E-03

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

  idx     feed        vapor          liquid      comp.

   1     0.7000     0.85330992     0.36947400    CH4                 

   2     0.3000     0.14669008     0.63052600    nC6                 

                                                 VAPOR                   LIQUID

  MOLAR FRACTION:               0.68314                 0.31686

  VOLUME FRACTION:              0.81859                 0.18141

  ZFACTOR:                                0.83964                 0.40310

  MW(g/mol):                               26.32884                60.26509

  MASS DEN(Kg/L):                   0.09429                 0.45168

  MOLE DEN(mol/L):                 3.58106                 7.49497

  VISCOSITY(cP):                       0.01606                 0.06226

  SURFACE TENSION (dyne/cm):                 1.55209

 Iter (SSI)       =           11

 Iter (NR)        =            2

 Error flash      =  4.44E-15

 Tolerance flash  =  1.00E-10

Pressure Calculation sequence 5

P (bar) =   70.000000

 T (K)   =  400.000000

  STABILITY ANALYSIS

     ONE-PHASE TPD =            -2.37955E-01        0.00000E+00

  Mixture is in  “TWO-PHASE”

  TWO-PHASE Flash computation

   idx     feed        vapor          liquid               comp.

     1     0.7000     0.85160535     0.25853311    CH4                 

   2     0.3000     0.14839465     0.74146689    nC6                 

                                                   VAPOR                   LIQUID

  MOLAR FRACTION:               0.74437                 0.25563

  VOLUME FRACTION:              0.89663                 0.10337

  ZFACTOR:                                 0.87029                 0.29529

  MW(g/mol):                              26.44840                68.04649

  MASS DEN(Kg/L):                   0.06396                 0.49018

  MOLE DEN(mol/L):                 2.41846                 7.20361

  VISCOSITY(cP):                      0.01468                 0.07396

  SURFACE TENSION (dyne/cm):                 3.17602

 Iter (SSI)       =            6

 Iter (NR)        =            2

 Error flash      = 1.88E-15

 Tolerance flash  =  1.00E-10

Comparisons among CCE, CVD, and DV

According to the above findings, it can be shown that the expected results such as feed composition, compressibility factors, and compositions in gas and liquid phases, for constant composition expansion (CCE) and constant volume depletion (CVD) have similar computation values. With the same properties, the values of differential vaporization (DV) are different from those of CCE and CVD.

Conclusions 

From the thermodynamic point of view, phase transitions happen when the free energy of a system is non-analytic for some choice of thermodynamic variables. The distinguishing characteristic of a phase transition is an abrupt change in one or more physical properties, with a small or no change in the intensive thermodynamic variables such as the temperature and pressure. Phase transitions are generally categorized in the first order transitions, the second order transitions and the infinite-order phase-transitions

Works Cited. 

Abudour, Agelia M., et al. “Predicting PR EOS binary interaction parameter using readily available molecular properties.” Fluid Phase Equilibria 434, 2017: 130-140.

Arabloo, Milad, and Shahin Rafiee-Taghanaki. “SVM modeling of the constant volume depletion (CVD) behavior of gas condensate reservoirs.” Journal of Natural Gas Science and Engineering 21, 2014: 1148-1155.

Ashour, I., Al-Rawahi, N., Fatemi, A. & Vakili-Nezhaad, G. Applications of Equations of      State in the Oil and Gas Industry. Thermodynamics – Kinetics of Dynamic Systems, 2011. DOI: 10.5772/23668.

Bi, Ran, and Hadi Nasrabadi. “Molecular simulation of the constant composition expansion experiment in shale multi-scale systems.” Fluid Phase Equilibria 495, 2019: 59-68.

Bradley, Howard B. “Petroleum engineering handbook.“, 1987.

Jin, Zhehui, and Abbas Firoozabadi. “Thermodynamic modeling of phase behavior in shale media.” Spe Journal 21.01, 2016: 190-207.

Kinney, Lance, and Catherine Norwood. “Review of Professional Engineering in Petroleum Engineering.” SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2018.

Li, Chuanyan, et al. “Calculation of the Phase Equilibrium of CO 2–Hydrocarbon Binary Mixtures by PR-BM EOS and PR EOS.” Transactions of Tianjin University 25.5, 2019: 540-548.

Pedersen, Karen Schou, Peter Lindskou Christensen, and Jawad Azeem Shaikh. Phase behavior of petroleum reservoir fluids. CRC press, 2014.

Umnahanant, Patamaporn. “An examination of vaporization, fusion and sublimation enthalpies of tolazoline using correlation gas chromatography and differential scanning calorimetry.” “Journal  of Thermal Analysis and Calorimetry”, 138.1, 2019: 443-450. To

Vinet, P. J. J. R., et al. “A universal equation of state for solids.” Journal of Physics C: Solid State Physics 19.20, 2008: L467.

Whitson, Curtis H., and Michael R. Brulé. Phase behavior. Vol. 20. Richardson, TX: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, 2010.