Dataset-2293234

/*Dataset*/

LIBNAME mylib ‘/home/u61325000/sasuser.v94’;

data capstone;

set mylib.sanni;

if age =’90+’ then age2=90;

else age2=10*age/10;

if diabetes = ‘INSULIN’ or diabetes = ‘NON-INSULIN’ then

        diabetes2 = ‘ONMEDYES’;

    else if diabetes = ‘NO’ then diabetes2=’ONMEDNO’;

    if CPT= ‘43644’ then Procedure=’LGBP’;

    else if CPT= ‘43770’ then Procedure=’LAGB’;

    else if CPT= ‘43775’ then Procedure=’LSG’;

run;

/* Proc contents */     

proc contents data=capstone;

run;

/*DIABETES AND DIABETES 2*/

proc freq data=capstone;

tables diabetes2;

run;

proc freq data=capstone;

tables diabetes;

run;

/*2A.Theory of Change Analysis*/

/* a.wound complication for Superficial Site Infection*/

proc freq data=capstone;

table supinfec;

run;

/*b.wound complication for Deep Site Infection*/

proc freq data=capstone;

table wndinfd;

run;

/*c.Organ Space Site infection*/

proc freq data=capstone;

table ORGSPCSSI;

run;

/*Wound Dehiscence*/

proc freq data=capstone;

tables dehis;

run;

/*2B. Theory of Change Analysis*/

/*diabetes2*/

proc freq data=capstone;

tables diabetes2;

run;

/*Association between diabetes2 and BMI*/

proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model supinfec = DIABetes2 BMI ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model wndinfd = DIABetes2 BMI ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model ORGSPCSSI = DIABetes2 BMI ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model dehis = DIABetes2 BMI ;

  run;

  /*Association between diabetes2 and age*/

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model supinfec = DIABetes2 age2 ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model wndinfd = DIABetes2 age2 ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model ORGSPCSSI = DIABetes2 age2 ;

  run;

  proc logistic data=CAPSTONE;

  class  DIABetes2 / param=ref ;

  model dehis = DIABetes2 age2 ;

  run;

  /*END*/

 /*To find the association between wound complication supinfec and Bmi*/

  proc logistic data=CAPSTONE;

  class  BMI / param=ref ;

  model supinfec =  BMI ;

  run;

  /*procedure*/

 /*Relation between wound complications, bariatric procedures, age2 and bmi*/

/*one-supinfec*/

 proc logistic data=CAPSTONE;

  class  DIABetes2 procedure/param=ref;

  model supinfec = procedure DIABetes2 age2 BMI ;

  run;

  /*two-organ space infection*/

 proc logistic data=CAPSTONE;

  class  DIABetes2 procedure/ param=ref ;

  model ORGSPCSSI = procedure DIABetes2 age2 BMI ;

  run;

  /*three-deep site infection*/

 proc logistic data=CAPSTONE;

  class  DIABetes2 procedure/ param=ref ;

  model wndinfd = procedure DIABetes2 age2 BMI ;

  run;

  /*four-wound dehiscence*/

 proc logistic data=CAPSTONE;

  class  DIABetes2 procedure/ param=ref ;

  model dehis = procedure DIABetes2 age2 BMI ;

  run;

 /*age2*/

 proc freq data=capstone;

tables age2;

run;

 proc logistic data=CAPSTONE;

  class  diabetes2 procedure ;

  model supinfec = procedure DIABetes2 age2 ;

  run;

 proc logistic data=CAPSTONE;

  class  diabetes2  ;

  model supinfec = DIABetes2 age2 ;

  run;

/*Measurement and Estimation Analysis*/

/*Doubt table 1 : age bmi*/

/*table 1: sex race inpatient asa*/

/*table-1 age*/

proc means data=capstone;

class procedure;

var age2;

run;

proc glm data=capstone plots (maxpoints=10000);

    class procedure;

    model Age2 = procedure;

    means procedure/Tukey;  /* Tukey’s post hoc test for pairwise comparisons */

run;

quit;

proc freq data=capstone;

table age2;

run;

/*table 1 bmi*/

proc means data=capstone;

class procedure;

var bmi;

run;

proc glm data=capstone;

    class procedure;

    model bmi = procedure;

    means procedure / tukey; /* Tukey’s post hoc test for pairwise comparisons */

run;

quit;

PROC FREQ DATA=capstone;

    TABLES sex*procedure race_new*procedure inout*procedure asaclas*procedure/chisq;

    RUN;

/*table 2 */

/* doubt : mortality morbidity */

/*No details about Morbidity*/

/*mortality*/

data updated;

set capstone; /* Replace your_dataset with your actual dataset name */

if YRDEATH in (2010, 2011) then YRDEATH_GROUPED = “2010-2011”;

else if YRDEATH = -99 then YRDEATH_GROUPED = “-99”;

else YRDEATH_GROUPED = “Other”; /* Adjust based on how you want to handle other years */

run;

proc freq data=updated;

tables YRDEATH_GROUPED*CPT / chisq  missing;

title “Frequency of YRDEATH_GROUPED by CPT”;

run;

/*reoperation*/

proc freq data=capstone;

table returnor*procedure/chisq;

run;

/*OPtime*/

PROC MEANS DATA=capstone mean min std ;

    CLASS procedure;

    VAR Optime;

    RUN;

PROC ANOVA DATA=capstone PLOTS(MAXPOINTS=NONE);

    CLASS procedure;

    MODEL Optime = procedure;

RUN;

/*Length of stay*/

 proc npar1way data=capstone;

 class procedure;

 var tothlos;

 run;  

 proc univariate data=capstone nextrobs=0;

 class procedure;

   var tothlos;

   output out=location

          mean=Mean mode=Mode median=Median

          q1=Q1 q3=Q3 p5=P5 p10=P10 p90=P90 p95=P95

          max=Max;

run;

proc print data=location noobs;

run;

/*table 3*/

PROC FREQ DATA=capstone;

    TABLES noupneumo*procedure ReIntub*procedure Pulembol*procedure

           FailWean*procedure  RenaInsf*procedure

           Urninfec*procedure  

           nothdvt*procedure /chisq;

             RUN;

proc freq data=capstone;

tables cdmi*procedure nothbleed*procedure Cdarrest*procedure neurodef*procedure dcnscoma*procedure noprenafl*procedure cnscva*procedure/fisher;

run;

/*table 4*/

/*wound complications*/

/*superficial*/

proc freq data=capstone;

tables supinfec*procedure/chisq;

run;

/*Deep site infection*/

proc freq data=capstone;

table wndinfd*procedure/chisq;

run;

/*Organ space site infection*/

proc freq data=capstone;

table ORGSPCSSI*procedure/chisq;

run;

/*wound dehiscence*/

/*As sample size is small used Fisher’s exact test*/

proc freq data=capstone;

tables dehis*procedure/fisher;

run;

/*Table 5*/

/*PROC LOGISTIC DATA=capstone;

    CLASS age2 bmi ;

    MODEL complications(event=’1′) = age_group bmi_group other_potential_confounders / SELECTION=BACKWARD;

    /* Specify other options as needed */

* Create a SAS dataset with the given data */

/* Univariate analysis using logistic regression for each risk factor and complications */

/* For each of the three surgical procedures: LGBP, LSG, and LAGB */

/* LGBP Procedure */

proc logistic data=capstone;

    class ASA_class diabetes dyspnea COPD HTN / param=ref;

    model complications(event=’1′) = ASA_class diabetes dyspnea COPD HTN;

    where procedure = ‘LGBP’;

    output out=univariate_LGBP p=predicted;

run;

/* LSG Procedure */

proc logistic data=capstone;

    class ASA_class diabetes dyspnea COPD HTN / param=ref;

    model complications(event=’1′) = ASA_class diabetes dyspnea COPD HTN;

    where procedure = ‘LSG’;

    output out=univariate_LSG p=predicted;

run;

/* LAGB Procedure */

proc logistic data=capstone;

    class ASA_class diabetes dyspnea COPD HTN / param=ref;

    model complications(event=’1′) = ASA_class diabetes dyspnea COPD HTN;

    where procedure = ‘LAGB’;

    output out=univariate_LAGB p=predicted;

run;

/* Compare the odds ratios (OR) and p-values for each of the surgical procedures */

proc means data=univariate_LGBP univariate_LSG univariate_LAGB nway noprint;

    var predicted;

    class complications;

    output out=table5_summary mean=OR;

run;