6.
a. max. z = 5x1 + 6x2
s.t. -2x1 + 3x2 = 3 ………………i
x1 + 2x2 <= 5 ………………ii
6x1 + 7x2 <= 3 …………….iii
For eqn i if x1 = 0 ; x2 = 1
x2 = 0 ; x1 = -3/2
ii if x1 = 0 ; x2 = 5/2
x2 = 0 ; x1 = 5
iii if x1 = 0 ; x2 = 3/7
x2 = 0 ; x1 = ½
Using the graphical method to find the feasible point
The solution will be feasible about the point P and the values of x1 and x2 about this point are 5, 5/2
So the feasible solution will be-
Max. z = 5x1 + 6x2
= 5*5 + 6*5/2
= 40
b. min. z = 5x1 + 6x2
s.t. 4x1 + 5x2 > = 10 ………………..i
4x1 + 8x2 > = 5 ………………….ii
For i if x1 = 0 ; x2 = 2
x2 = 0 ; x1 = 5/2
ii x1 = 0 ; x2 = 5/8
x2 = 0 ; x1 = 5/4
Applying the graphical method to find the feasible point P
The feasible solution will be about point P and the values of x1 and x2 about this point are x1 = 5/4 and x2 = 5/8
So the feasible solution will be
min. z = 5x1 + 6x2
= 5*5/4 + 6*5/8
= 10
7. Given that min. z = 5x1 + 6x2 + 3x3
s.t. 5x1 + 5x2 + 3x3 >= 50 …………….i
x1 + x2 – x3 >= 20 ………………….ii
7x1 + 6x2 – 9x3 >= 30 ……………..iii
5x1 + 5x2 + 5x3 >= 35 …………….iv
2x1 + 4x2 – 15x3 >= 10 …………….v
12x1 + 10x2 >= 90 …………………..vi
x2 – 10x3 >= 20 ……………………vii
x1 , x2 , x3 >= 0
I will use the dual method to solve the given linear programming problem as in the dual method we can easily find the dual point and will not be a lengthy procedure.
Min. D = 5x1 + 6x2 + 3x3
The dual point is D(10, 10, 50/3)
So the optimal solution will be D = 5*10 + 6*10 + 3*50/3
= 160